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 Right Triangle Review 

A right triangle is any triangle that contains a 90 degree angle.  

There are six pieces of information we can know about a given right triangle: the lengths of its longest 

side 𝑐 (hypotenuse) and two shorter sides 𝑎 and 𝑏 (legs), and the three angles 𝐴, 𝐵, and 𝐶 (one of which 

– by definition – is 90 degrees). 

 

 

 

 

Knowing the length of any two of the sides, the third can be found using the Pythagorean Theorem. 

Pythagorean Theorem    𝑎2 + 𝑏2 = 𝑐2 

Example 1    𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎. 

 

 

 

Rearranging the Pythagorean Theorem allows us to solve for the length of 𝑎. 

   𝑎 = √𝑐2 − 𝑏2 

   𝑎 = √102 − 62 = √100 − 36 = √64 = 8 

The missing length value of our triangle is 8. 

Similarly, since angle C is 90 degrees, and our three angles must sum to 180 degrees, we know that 

angles A and B must sum to 90 degrees. 

     𝐴 + 𝐵 + 𝐶 = 180°  𝑊ℎ𝑒𝑟𝑒 𝐶 = 90° 

     𝐴 + 𝐵 + 90° = 180° 

     𝐴 + 𝐵 = 90° 

  

𝑎 

𝑏 

𝑐 

𝐴 

𝐵 

𝐶 

 

𝑎 

6 10 
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Example 2        𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝐵. 

 

  

   𝐵 = 90 − 𝐴 

Our value for 𝐴, in this case, is 42°. 

   𝐵 = (90 − 42)° = 48° 

Relating Similar Triangles 

When we multiply the sides of a right triangle by some constant k, we get a triangle of a different size, 

but with the same angles as our original triangle.  

 

 

 

 

 

 

If we take the ratio of sides 𝑘𝑎 and 𝑘𝑏 on our larger triangle, we see that the constant coefficients 

cancel, and the ratio is equal to the ratio of sides 𝑎 and 𝑏 on our smaller triangle. 

     
𝑘𝑎

𝑘𝑏
=

𝑎

𝑏
 

Using this information, we can relate the lengths of two sides of a given right triangle to its angles. 

 

 

  

 

This standard 30-60-90 triangle serves to illustrate the concept of relating the ratios of a right triangle’s 

sides to its angles. If we have a right triangle whose angle 𝐴 is 30°, then we know the ratio of sides 𝑏 to 

𝑎 must be 
√3

2
, the ratio of sides 𝑎 to 𝑐 must to 

1

2
, and 𝑏 to 𝑐 must be 

√3

2
. Similarly, if we have a right 

triangle whose sides 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 form these ratios, we know angle 𝐴 must be 30°. 

  

𝐵 42° 

𝑐 
𝑏 

𝑎 

𝑘𝑐 

𝑘𝑎 

𝑘𝑏 

𝑐 =2 

𝑎 =1 

𝑏 = √3 

𝐴 = 30° 

𝐵 = 60° 

𝐶 
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 Trigonometric Ratios 

When defining the standard trigonometric ratios, we first need to decide on an angle to act as a point of 

reference (traditionally labelled theta (𝜃)). Without a reference angle, we would need to define each 

angle and side every, single time we study a right triangle.  

Either of the two angles in our right triangle that are not the 90 degree angle can be theta. The other 

angle, by default, is 90° − 𝜃. 

 

 

 

Once we have decided on theta, we label the three sides of our triangle in relation to it. The longest side 

remains the hypotenuse (𝐻), the side across from theta is labelled the opposite side (𝑂), and the side 

that forms theta with the hypotenuse is labelled the adjacent side (𝐴). 

 

 

 

 

Note: It is equally valid to choose the other non-90 degree angle to be theta. If we do, it is necessary to 

label our triangle differently. 

 

 

 

 

Using these new labels, we define the three main trigonometric ratios and their reciprocals: the sine of 

an angle (sin𝜃) is the ratio of the opposite side to the hypotenuse, the cosine of an angle (cos 𝜃) is the 

ratio of the adjacent side to the hypotenuse, and the tangent of an angle (tan 𝜃) is the ratio of the 

opposite side to the adjacent side.  

The reciprocals of sine, cosine, and tangent are cosecant (csc𝜃), secant (sec 𝜃), and cotangent (cot 𝜃), 

respectively. 

 

  

𝜃 

90° − 𝜃 

𝜃 

𝑂 

𝐴 

𝐻 

𝜃 

90° − 𝜃 

90° − 𝜃 

𝐻 
𝐴 

𝑂 
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   sin𝜃 =
𝑂

𝐻
=

1

csc𝜃
   csc 𝜃 =

𝐻

𝑂
=

1

sin𝜃
 

   cos 𝜃 =
𝐴

𝐻
=

1

sec𝜃
   sec 𝜃 =

𝐻

𝐴
=

1

cos𝜃
 

   tan 𝜃 =
𝑂

𝐴
=

sin𝜃

cos𝜃
=

1

cot𝜃
  cot 𝜃 =

𝐴

𝑂
=

cos𝜃

sin𝜃
=

1

tan𝜃
 

So, if we know a non-90 degree angle and any of the three sides of a given right angle, we can use these 

definitions to solve for the value of any angle or side not given. 

Example 3  𝐸𝑥𝑝𝑟𝑒𝑠𝑠 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜𝑠 sin𝜃 , tan 𝜃 , 𝑎𝑛𝑑 sec𝜃. 

 

 

 

 

In order to express sin𝜃, we need to refer to our ratio definitions, then take the values off the right 

triangle and substitute them into the equation. We finish by rationalizing our fraction. 

   sin𝜃 =
𝑂

𝐻
=

6

√61
=

6√61

61
 

To express tan 𝜃, we need to solve for our adjacent side. We can do this using the Pythagorean Theorem. 

   𝐴 = √𝐻2 − 𝑂2 = √(√61)
2
− 62 = √61 − 36 = √25 = 5 

   tan 𝜃 =
6

5
 

Our last ratio to express, sec 𝜃, is the inverse of cos 𝜃. With all of the sides of our triangle defined, it can 

be expressed easily. 

   sec 𝜃 =
𝐻

𝐴
=

√61

5
 

 

 Trigonometric Inverses 

The inverse trigonometric functions are used when two sides of a right triangle are known, and the goal 

is to solve for a related angle. The inverse of sine (arcsin (
𝑂

𝐻
)  𝑜𝑟 sin−1 (

𝑂

𝐻
)), for example, can be used to 

solve for theta if the ratio of the opposite side and the hypotenuse are given.   

Note: The −1 does not imply  
1

sin(
𝑂

𝐻
)
, rather that sin−1 (

𝑂

𝐻
) is an inverse trigonometric function. 

  

𝜃 

6 

√61 

𝐴 
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Each ratio and its reciprocal has a corresponding inverse function: 

   arcsin (
𝑂

𝐻
) = sin−1 (

𝑂

𝐻
) = 𝜃  arccsc (

𝐻

𝑂
) = csc−1 (

𝐻

𝑂
) = 𝜃 

   arccos (
𝐴

𝐻
) = cos−1 (

𝐴

𝐻
) = 𝜃  arcsec (

𝐻

𝐴
) = sec−1 (

𝐻

𝐴
) = 𝜃 

   arctan (
𝑂

𝐴
) = tan−1 (

𝑂

𝐴
) = 𝜃  arccot (

𝐴

𝑂
) = cot−1 (

𝐴

𝑂
) = 𝜃 

Example 4  𝑊𝑖𝑡ℎ 𝑎 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑜𝑟, 𝑢𝑠𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑎𝑡𝑖𝑜𝑠 𝑡𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝜃 𝑓𝑟𝑜𝑚 𝒆𝒙𝒂𝒎𝒑𝒍𝒆 𝟑. 

We can calculate theta using any of our inverse ratios, resulting in an approximate angle value. 

   sin−1 (
6√61

61
) = sin−1( 0.768) = 𝟓𝟎. 𝟐° = 𝜽 

We can check this approximation using one of our other inverse ratios. 

   tan−1 (
6

5
) = tan−1(1.2) = 𝟓𝟎. 𝟐° = 𝜽 

The Unit Circle 

The unit circle is a circle with a radius of 1, centered at the origin of a Cartesian plane.  

 

 

 

 

 

 

 

 

 

We relate the unit circle to trigonometry by superimposing triangles over it, using the ray from the 

origin to the circle’s perimeter as our hypotenuse, and the angle between this ray and the positive 

horizontal axis (measured counter-clockwise) as theta. 

Note: When discussing the unit circle, we will be expressing angles in terms of radians. The degrees-to-

radians conversion factor is 180° = 𝜋. 

  

𝑦 + 

𝑥 + (1,0) 

(0,0) 

(0,1) 

(−1,0) 

(0, −1) 
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Since sin 𝜃 =
𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒

𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 ,  and using the fact that our hypotenuse is 1, we know that sin𝜃 =

𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒

1
=

𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒 , or the height of our superimposed triangle measured against the vertical axis. Likewise, 

since cos 𝜃 =
𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡

𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
, we know that cos𝜃 = 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡, or the base of our superimposed triangle 

measured against the horizontal axis. Another way of thinking about this is that any point on the 

perimeter of the unit circle can be expressed as the (𝑥, 𝑦) ordered pair (cos 𝜃 , sin 𝜃). 

 

 

 

 

 

 

 

 

 

 

Although there are an infinite number of (cos𝜃 , sin𝜃) points we can create by slightly changing the 

value of theta, there are three of particular note that are created when we use what are widely 

regarded as “special” angles: 
𝜋

6
,
𝜋

4
,
𝜋

3
. These, along with the points on our circle we already know for 0 

and 
𝜋

2
 result in the first quadrant of our unit circle being filled in with notable (cos 𝜃 , sin 𝜃) values. 

 

 

 

 

 

 

 

 

  

1 

𝜃 

cos 𝜃 

sin 𝜃 

(cos 𝜃 , sin 𝜃) 

𝜋

6
  (

√3

2
,
1

2
)  

𝜋

4
  (

√2

2
,
√2

2
)  

𝜋

3
  (

1

2
,
√3

2
)  
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Up until this point, we have been restricted to the angles  0 − 90° or 0 −
𝜋

2
 when discussing 

trigonometric ratios due to the limitations imposed by the definition of a right triangle; since we have 

one right angle, neither of the other two angles can be greater than 90°, or our angles would sum to a 

value greater than 180°. 

By redefining sin𝜃 and cos 𝜃 as the height and base of our superimposed triangle measured against the 

vertical and horizontal axes, we can determine values of these (and all other!) trigonometric functions 

for angles greater than 90° or  
𝜋

2
, with theta defined as the angle between the positive horizontal axis 

and the hypotenuse of our triangle, measured counter-clockwise. 

 

 

 

 

 

 

 

 

 

 

 

  

𝜋

6
  (

√3

2
,
1

2
)  

𝜋

4
  (

√2

2
,
√2

2
)  

𝜋

3
  (

1

2
,
√3

2
)  

2𝜋

3
  (

−1

2
,
√3

2
)  

3𝜋

4
  (

−√2

2
,
√2

2
)  

5𝜋

6
  (

−√3

2
,
1

2
)  

7𝜋

6
  (

−√3

2
,
−1

2
)  

5𝜋

4
  (

−√2

2
,
−√2

2
)  

4𝜋

3
  (

−1

2
,
√3

2
)  

11𝜋

6
  (

√3

2
,
−1

2
)  

7𝜋

4
  (

√2

2
,
−√2

2
)  

5𝜋

3
  (

1

2
,
−√3

2
)  
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Graphing Trigonometric Functions Overview 

Graphing trigonometric functions provides us with a way of visually examining how the values of 

trigonometric functions (particularly sin 𝜃 and cos 𝜃) behave as theta changes.  

Looking at our unit circle, we can see that as theta increases from 0° to 90° or 0 to 
𝜋

2
, sin𝜃 (the height of 

our triangle) increases to 1. As theta continues to increase to 180° or 𝜋, sin 𝜃 decreases to 0. At 270° or 
3𝜋

2
, sin 𝜃 has decreased to −1, and after a full rotation of 360° or 2𝜋, sin𝜃 is back to 0. 

Here we have 𝑦 = sin𝜃 graphed from −2𝜋 to 2𝜋. 

 

 

 

 

 

As we know, once we have completed a full rotation of the unit circle, the values we find for sin 𝜃 begin 

repeating. The same is true for sin 𝜃 values corresponding to theta values that are less than 0. This is 

reflected in our graph by our sine wave repeating indefinitely in both the positive and negative 

horizontal directions. 

Multiplying our function by a constant will increase the magnitude (or distance from the horizontal axis 

to our maximum and minimum values) of our wave. For instance, graphing  𝑦 = 2 sin 𝜃 will result in a 

wave that increases from 0 to 2, decreases to −2, returns to 0, then repeats. 

 

 

 

 

 

 

 

 

  

𝑦 + 

𝜃 + 

𝑦 + 

𝜃 + 
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Adding a constant will shift our wave in the vertical direction. For instance, graphing 𝑦 = 1 + sin𝜃 will 

result in a wave shifted 1 unit in the positive vertical direction. 

 

 

 

 

 

Adding a constant to our argument will shift our wave horizontally. A simple way to think of this shift is 

taking the constant to be your wave’s new “starting point”. If we add the constant 
7𝜋

4
 to our argument,  

sin(𝜃 +
7𝜋

4
) will be equal to sin

7𝜋

4
 when 𝜃 = 0. Besides this horizontal shift, the wave will behave 

normally. 

 

 

 

 

 

Finally, multiplying our angle by a constant will change the wavelength (distance from “peak-to-peak” or 

“trough-to-trough”) of our wave. If we graph 𝑦 = sin(4𝜃), our resulting wave will have a wavelength 

that is 
1

4
 the length of our 𝑦 = sin 𝜃 graph.  

 

 

 

 

 

 

 

  

𝑦 + 

𝜃 + 

𝑦 + 

𝜃 + 

𝑦 + 

𝜃 + 
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Similarly, if we graph 𝑦 = sin (
𝜃

2
), our resulting wave will have a wavelength 2 times the length of our 

𝑦 = sin 𝜃 graph. 

 

 

 

 

 

When graphed,  𝑦 = cos 𝜃 behaves exactly as 𝑦 = sin𝜃 does, with the exception that our wave 

intercepts the vertical axis at 𝑦 = 1 (since cos 0 = 1). 

 

 

 

 

 

Graphing 𝑦 = tan 𝜃 results in a function with a positive slope that crosses the horizontal axis whenever 

sin𝜃 (the numerator of the tangent function) is equal to 0, and goes to ±∞ as cos𝜃 (the denominator 

of the tangent function) approaches 0. When cos𝜃 = 0, tan 𝜃 does not exist and the graph has vertical 

asymptotes. 

 

 

 

 

 

 

 

 

  

𝑦 + 

𝜃 + 

𝑦 + 

𝜃 + 

𝑦 + 

𝜃 + 
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Graphing the reciprocal of sin 𝜃, 𝑦 = csc𝜃, results in a function that approaches ∞ as sin𝜃 approaches 

0 and is positive, −∞ as sin𝜃 approaches 0 and is negative, has vertical asymptotes where sin 𝜃 = 0, 

and never crosses the 𝜃-axis. When 𝑠𝑖𝑛𝜃 = 1,  our function is also equal to 1, and when sin𝜃 = −1, the 

function is equal to −1. 

 

 

 

 

 

 

Graphing 𝑦 = sec 𝜃 results in in a function that is very similar to 𝑦 = csc 𝜃, however, (since it is the 

reciprocal function of cos 𝜃), it approaches ±∞ when cos 𝜃 approaches 0, and ±1 when cos 𝜃 equal to 

±1. 

 

 

 

 

 

 

 

Finally, graphing 𝑦 = cot 𝜃 results in a function very similar in behaviour to 𝑦 = tan𝜃. It has a negative 

slope, crosses the horizontal axis whenever cos 𝜃 (the numerator of the cotangent function) is equal to 

0, and goes to ±∞ as sin 𝜃 (the denominator of the cotangent function) approaches 0. 

 

 

 

 

 

 

 

  

𝑦 + 

𝜃 + 

𝑦 + 

𝜃 + 

𝑦 + 

𝜃 + 


